User interface language: English | Español

HL Paper 2

A wind turbine is designed so that the rotation of the blades generates electricity. The turbine is built on horizontal ground and is made up of a vertical tower and three blades.

The point A is on the base of the tower directly below point B at the top of the tower. The height of the tower, AB, is 90m. The blades of the turbine are centred at B and are each of length 40m. This is shown in the following diagram.

The end of one of the blades of the turbine is represented by point C on the diagram. Let h be the height of C above the ground, measured in metres, where h varies as the blade rotates.

Find the

The blades of the turbine complete 12 rotations per minute under normal conditions, moving at a constant rate.

The height, h, of point C can be modelled by the following function. Time, t, is measured from the instant when the blade [BC] first passes [AB] and is measured in seconds.

ht=90-40cos72t°, t0

maximum value of h.

[1]
a.i.

minimum value of h.

[1]
a.ii.

Find the time, in seconds, it takes for the blade [BC] to make one complete rotation under these conditions.

[1]
b.i.

Calculate the angle, in degrees, that the blade [BC] turns through in one second.

[2]
b.ii.

Write down the amplitude of the function.

[1]
c.i.

Find the period of the function.

[1]
c.ii.

Sketch the function h(t) for 0t5, clearly labelling the coordinates of the maximum and minimum points.

[3]
d.

Find the height of C above the ground when t=2.

[2]
e.i.

Find the time, in seconds, that point C is above a height of 100 m, during each complete rotation.

[3]
e.ii.

The wind speed increases and the blades rotate faster, but still at a constant rate.

Given that point C is now higher than 110 m for 1 second during each complete rotation, find the time for one complete rotation.

[5]
f.

Markscheme

maximum h=130 metres             A1

 

[1 mark]

a.i.

minimum h=50 metres             A1

 

[1 mark]

a.ii.

60÷12=  5 seconds             A1

 

[1 mark]

b.i.

360÷5            (M1)


Note: Award (M1) for 360 divided by their time for one revolution.

=72°             A1

 

[2 marks]

b.ii.

(amplitude =)  40         A1

 

[1 mark]

c.i.

(period =36072=5         A1

 

[1 mark]

c.ii.

Maximum point labelled with correct coordinates.         A1

At least one minimum point labelled. Coordinates seen for any minimum points must be correct.         A1

Correct shape with an attempt at symmetry and “concave up" evident as it approaches the minimum points. Graph must be drawn in the given domain.         A1

 

[3 marks]

d.

h=90-40cos144°           (M1)

h= 122m  122.3606           A1

 

[2 marks]

e.i.

evidence of h=100 on graph  OR  100=90-40cos72t           (M1)

t coordinates 3.55 (3.54892...)  OR  1.45 (1.45107...) or equivalent           (A1)


Note: Award A1 for either t-coordinate seen.


=2.10 seconds  2.09784           A1

 

[3 marks]

e.ii.

METHOD 1

90-40cosat°=110           (M1)

cosat°=-0.5

at°=120, 240           (A1)

1=240a-120a           (M1)

a=120           (A1)

period =360120=3 seconds           A1

 

METHOD 2

attempt at diagram           (M1)

cosα=2040 (or recognizing special triangle)           (M1)

angle made by C2α=120°           (A1)

one third of a revolution in 1 second           (M1)

hence one revolution =3 seconds           A1

 

METHOD 3

considering ht=110 on original function           (M1)

t=53  or  103           (A1)

103-53=53           (A1)


Note: Accept t=1.67 or equivalent.


so period is 35 of original period           (R1)

so new period is 3 seconds           A1

 

[5 marks]

f.

Examiners report

This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.

a.i.

This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.

a.ii.

This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.

b.i.

This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.

b.ii.

This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.

c.i.

This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.

c.ii.

This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.

d.

This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.

e.i.

This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.

e.ii.

This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.

f.



The cross-sectional view of a tunnel is shown on the axes below. The line [AB] represents a vertical wall located at the left side of the tunnel. The height, in metres, of the tunnel above the horizontal ground is modelled by y=-0.1x3+ 0.8x2, 2x8, relative to an origin O.

Point A has coordinates (2, 0), point B has coordinates (2, 2.4), and point C has coordinates (8, 0).

Find the height of the tunnel when

Find dydx.

[2]
a.i.

Hence find the maximum height of the tunnel.

[4]
a.ii.

x=4.

[2]
b.i.

x=6.

[1]
b.ii.

Use the trapezoidal rule, with three intervals, to estimate the cross-sectional area of the tunnel.

[3]
c.

Write down the integral which can be used to find the cross-sectional area of the tunnel.

[2]
d.i.

Hence find the cross-sectional area of the tunnel.

[2]
d.ii.

Markscheme

evidence of power rule (at least one correct term seen)                 (M1)

dydx=-0.3x2+1.6x                 A1


[2 marks]

a.i.

-0.3x2+1.6x=0                 M1

x=5.33 5.33333, 163                 A1

y=-0.1×5.333333+0.8×5.333332                 (M1)

 

Note: Award M1 for substituting their zero for dydx 5.333 into y.


7.59 m  7.58519                 A1


Note: Award M0A0M0A0 for an unsupported 7.59.
Award at most M0A0M1A0 if only the last two lines in the solution are seen.
Award at most M1A0M1A1 if their x=5.33 is not seen.


[6 marks]

a.ii.

One correct substitution seen             (M1)

6.4m                 A1


[2 marks]

b.i.

7.2m                 A1


[1 mark]

b.ii.

A=12×22.4+0+26.4+7.2                 (A1)(M1)

 

Note: Award A1 for h=2 seen. Award M1 for correct substitution into the trapezoidal rule (the zero can be omitted in working).


=29.6m2                 A1


[3 marks]

c.

A=28-0.1x3+0.8x2dx  OR  A=28ydx                 A1A1

 

Note: Award A1 for a correct integral, A1 for correct limits in the correct location. Award at most A0A1 if dx is omitted.


[2 marks]

d.i.

A=32.4 m2                  A2


Note:
As per the marking instructions, FT from their integral in part (d)(i). Award at most A1FTA0 if their area is >48, this is outside the constraints of the question (a 6×8 rectangle).


[2 marks]

d.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.



A student investigating the relationship between chemical reactions and temperature finds the Arrhenius equation on the internet.

k=Ae-cT

This equation links a variable k with the temperature T, where A and c are positive constants and T>0.

The Arrhenius equation predicts that the graph of lnk against 1T is a straight line.

Write down

The following data are found for a particular reaction, where T is measured in Kelvin and k is measured in cm3mol1s1:

Find an estimate of

Show that dkdT is always positive.

[3]
a.

Given that limTk=A and limT0k=0, sketch the graph of k against T.

[3]
b.

(i)   the gradient of this line in terms of c;

(ii)  the y-intercept of this line in terms of A.

[4]
c.

Find the equation of the regression line for lnk on 1T.

[2]
d.

c.

It is not required to state units for this value.

[1]
e.i.

A.

It is not required to state units for this value.

[2]
e.ii.

Markscheme

attempt to use chain rule, including the differentiation of 1T          (M1)

dkdT=A×cT2×e-cT          A1

this is the product of positive quantities so must be positive          R1


Note: The R1 may be awarded for correct argument from their derivative. R1 is not possible if their derivative is not always positive.

 

[3 marks]

a.

         A1A1A1

 

Note: Award A1 for an increasing graph, entirely in first quadrant, becoming concave down for larger values of T, A1 for tending towards the origin and A1 for asymptote labelled at k=A.

 

[3 marks]

b.

taking ln of both sides   OR   substituting y=lnx  and  x=1T           (M1)

lnk=lnA-cT  OR  y=-cx+lnA           (A1)


(i)   so gradient is -c         A1


(ii)  y-intercept is lnA         A1

 

Note: The implied (M1) and (A1) can only be awarded if both correct answers are seen. Award zero if only one value is correct and no working is seen.

 

[4 marks]

c.

an attempt to convert data to 1T and lnk           (M1)

e.g. at least one correct row in the following table

line is lnk=-13400×1T+15.0   =-13383.1×1T+15.0107         A1

 

[2 marks]

d.

c=13400   13383.1         A1

 

[1 mark]

e.i.

attempt to rearrange or solve graphically lnA=15.0107          (M1)

A=3300000    3304258         A1

 Note: Accept an A value of 3269017… from use of 3sf value.

[2 marks]

e.ii.

Examiners report

This question caused significant difficulties for many candidates and many did not even attempt the question. Very few candidates were able to differentiate the expression in part (a) resulting in difficulties for part (b). Responses to parts (c) to (e) illustrated a lack of understanding of linearizing a set of data. Those candidates that were able to do part (d) frequently lost a mark as their answer was given in x and y.

a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.i.
[N/A]
e.ii.



Consider the expression  f ( x ) = tan ( x + π 4 ) cot ( π 4 x ) .

The expression  f ( x ) can be written as  g ( t ) where  t = tan x .

Let  α β be the roots of  g ( t ) = k , where 0 < k < 1.

Sketch the graph of  y = f ( x ) for  5 π 8 x π 8 .

[2]
a.i.

With reference to your graph, explain why  f  is a function on the given domain.

[1]
a.ii.

Explain why f has no inverse on the given domain.

[1]
a.iii.

Explain why f is not a function for 3 π 4 x π 4 .

[1]
a.iv.

Show that  g ( t ) = ( 1 + t 1 t ) 2 .

[3]
b.

Sketch the graph of  y = g ( t ) for t ≤ 0. Give the coordinates of any intercepts and the equations of any asymptotes.

[3]
c.

Find  α and β in terms of k .

[5]
d.i.

Show that  α  + β < −2.

[2]
d.ii.

Markscheme

     A1A1

A1 for correct concavity, many to one graph, symmetrical about the midpoint of the domain and with two axes intercepts.

Note: Axes intercepts and scales not required.

A1 for correct domain

[2 marks]

a.i.

for each value of x there is a unique value of f ( x )       A1

Note: Accept “passes the vertical line test” or equivalent.

[1 mark]

a.ii.

no inverse because the function fails the horizontal line test or equivalent      R1

Note: No FT if the graph is in degrees (one-to-one).

[1 mark]

a.iii.

the expression is not valid at either of x = π 4 ( or 3 π 4 )        R1

[1 mark]

a.iv.

METHOD 1

f ( x ) = tan ( x + π 4 ) tan ( π 4 x )      M1

= tan x + tan π 4 1 tan x tan π 4 tan π 4 tan x 1 + tan π 4 tan x       M1A1

= ( 1 + t 1 t ) 2       AG

 

METHOD 2

f ( x ) = tan ( x + π 4 ) tan ( π 2 π 4 + x )       (M1)

= ta n 2 ( x + π 4 )      A1

g ( t ) = ( tan x + tan π 4 1 tan x tan π 4 ) 2      A1

= ( 1 + t 1 t ) 2       AG

[3 marks]

b.

 

for t ≤ 0, correct concavity with two axes intercepts and with asymptote y  = 1      A1

t intercept at (−1, 0)      A1

y intercept at (0, 1)       A1

[3 marks]

c.

METHOD 1

α β satisfy ( 1 + t ) 2 ( 1 t ) 2 = k      M1

1 + t 2 + 2 t = k ( 1 + t 2 2 t )      A1

( k 1 ) t 2 2 ( k + 1 ) t + ( k 1 ) = 0      A1

attempt at using quadratic formula      M1

α β  = k + 1 ± 2 k k 1 or equivalent     A1

 

METHOD 2

α β satisfy  1 + t 1 t = ( ± ) k       M1

t + k t = k 1       M1

t = k 1 k + 1  (or equivalent)      A1

t k t = ( k + 1 )      M1

t = k + 1 k 1  (or equivalent)       A1

so for eg α = k 1 k + 1 β = k + 1 k 1

[5 marks]

d.i.

α  + β  = 2 ( k + 1 ) ( k 1 ) ( = 2 ( 1 + k ) ( 1 k ) )      A1

since  1 + k > 1 k      R1

α  + β < −2     AG

Note: Accept a valid graphical reasoning.

[2 marks]

d.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
a.iv.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.



Charlotte decides to model the shape of a cupcake to calculate its volume.

From rotating a photograph of her cupcake she estimates that its cross-section passes through the points (0, 3.5), (4, 6), (6.5, 4), (7, 3) and (7.5, 0), where all units are in centimetres. The cross-section is symmetrical in the x-axis, as shown below:

She models the section from (0, 3.5) to (4, 6) as a straight line.

Charlotte models the section of the cupcake that passes through the points (4, 6), (6.5, 4), (7, 3) and (7.5, 0) with a quadratic curve.

Charlotte thinks that a quadratic with a maximum point at (4, 6) and that passes through the point (7.5, 0) would be a better fit.

Believing this to be a better model for her cupcake, Charlotte finds the volume of revolution about the x-axis to estimate the volume of the cupcake.

Find the equation of the line passing through these two points.

[2]
a.

Find the equation of the least squares regression quadratic curve for these four points.

[2]
b.i.

By considering the gradient of this curve when x=4, explain why it may not be a good model.

[1]
b.ii.

Find the equation of the new model.

[4]
c.

Write down an expression for her estimate of the volume as a sum of two integrals.

[4]
d.i.

Find the value of Charlotte’s estimate.

[1]
d.ii.

Markscheme

y=58x+72   y=0.625x+3.5                  A1A1


Note:
Award A1 for 0.625x, A1 for 3.5.
Award a maximum of A0A1 if not part of an equation.


[2 marks]

a.

y=-0.975x2+9.56x-16.7                  (M1)A1

y=-0.974630x2+9.55919x-16.6569


[2 marks]

b.i.

gradient of curve is positive at x=4                 R1


Note: Accept a sensible rationale that refers to the gradient.


[1 mark]

b.ii.

METHOD 1

let y=ax2+bx+c

differentiating or using x=-b2a                       (M1)

8a+b=0

substituting in the coordinates
7.52a+7.5b+c=0                       (A1)
42a+4b+c=6                       (A1)

solve to get
y=-2449x2+19249x-9049  OR  y=-0.490x2+3.92x-1.84                       A1


Note: Use of quadratic regression with points using the symmetry of the graph is a valid method.

 

METHOD 2

y=ax-42+6                       (M1)

0=a7.5-42+6                       (M1)

a=-2449                       (A1)

y=-2449x-42+6  OR  y=-0.490x-42+6                       A1

 

[4 marks]

c.

π0458x+3.52dx+π47.5-2449x-42+62dx                       (M1)(M1) (M1)A1


Note: Award (M1)(M1)(M1)A0 if π is omitted but response is otherwise correct. Award (M1) for an integral that indicates volume, (M1) for their part (a) within their volume integral, (M1) for their part (b)(i) within their volume integral, A1 for their correct two integrals with all correct limits.

 

[4 marks]

d.i.

501 cm3  501.189                      A1

 

[1 mark]

d.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.



An environmental scientist is asked by a river authority to model the effect of a leak from a power plant on the mercury levels in a local river. The variable x measures the concentration of mercury in micrograms per litre.

The situation is modelled using the second order differential equation

d2xdt2+3dxdt+2x=0

where t0 is the time measured in days since the leak started. It is known that when t=0, x=0 and dxdt=1.

If the mercury levels are greater than 0.1 micrograms per litre, fishing in the river is considered unsafe and is stopped.

The river authority decides to stop people from fishing in the river for 10% longer than the time found from the model.

Show that the system of coupled first order equations:

dxdt=y

dydt=-2x-3y

can be written as the given second order differential equation.

[2]
a.

Find the eigenvalues of the system of coupled first order equations given in part (a).

[3]
b.

Hence find the exact solution of the second order differential equation.

[5]
c.

Sketch the graph of x against t, labelling the maximum point of the graph with its coordinates.

[2]
d.

Use the model to calculate the total amount of time when fishing should be stopped.

[3]
e.

Write down one reason, with reference to the context, to support this decision.

[1]
f.

Markscheme

differentiating first equation.         M1

d2xdt2=dydt

substituting in for dydt         M1

=-2x-3y=-2x-3dxdt

therefore d2xdt2+3dxdt+2x=0         AG


Note: The AG line must be seen to award the final M1 mark.

 

[2 marks]

a.

the relevant matrix is 0  1-2  -3           (M1)


Note:  -3  -21  0 is also possible.


(this has characteristic equation) -λ-3-λ+2=0           (A1)

λ=-1, -2         A1

 

[3 marks]

b.

EITHER

the general solution is x=Ae-t+Be-2t             M1


Note: Must have constants, but condone sign error for the M1.


so dxdt=-Ae-t-2Be-2t             M1A1

 

OR

attempt to find eigenvectors           (M1)

respective eigenvectors are 1-1 and 1-2 (or any multiple)

xy=Ae-t1-1+Be-2t1-2           (M1)A1

 

THEN

the initial conditions become:

0=A+B

1=-A-2B             M1

this is solved by A=1, B=-1

so the solution is x=e-t-e-2t            A1

 

[5 marks]

c.

            A1A1

 

Note: Award A1 for correct shape (needs to go through origin, have asymptote at y=0 and a single maximum; condone x<0). Award A1 for correct coordinates of maximum.

 

[2 marks]

d.

intersecting graph with y=0.1         (M1)

so the time fishing is stopped between 2.1830 and 0.11957           (A1)

=2.06 343  days           A1

 

[3 marks]

e.

Any reasonable answer. For example:

There are greater downsides to allowing fishing when the levels may be dangerous than preventing fishing when the levels are safe.

The concentration of mercury may not be uniform across the river due to natural variation / randomness.

The situation at the power plant might get worse.

Mercury levels are low in water but still may be high in fish.           R1

 

Note: Award R1 for a reasonable answer that refers to this specific context (and not a generic response that could apply to any model).

 

[1 mark]

f.

Examiners report

Many candidates did not get this far, but the attempts at the question that were seen were generally good. The greater difficulties were seen in parts (e) and (f), but this could be a problem with time running out.

a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.



The voltage v in a circuit is given by the equation

v ( t ) = 3 sin ( 100 π t ) t 0  where t is measured in seconds.

The current i in this circuit is given by the equation

i ( t ) = 2 sin ( 100 π ( t + 0.003 ) ) .

The power p in this circuit is given by p ( t ) = v ( t ) × i ( t ) .

The average power  p a v in this circuit from t = 0 to t = T is given by the equation

p a v ( T ) = 1 T 0 T p ( t ) d t , where  T > 0 .

Write down the maximum and minimum value of v .

[2]
a.

Write down two transformations that will transform the graph of y = v ( t ) onto the graph of y = i ( t ) .

[2]
b.

Sketch the graph of y = p ( t ) for 0 ≤ t ≤ 0.02 , showing clearly the coordinates of the first maximum and the first minimum.

[3]
c.

Find the total time in the interval 0 ≤ t ≤ 0.02 for which  p ( t )  ≥ 3.

 

[3]
d.

Find p a v (0.007).

 

[2]
e.

With reference to your graph of  y = p ( t )  explain why  p a v ( T ) > 0 for all T > 0.

 

[2]
f.

Given that p ( t ) can be written as  p ( t ) = a sin ( b ( t c ) ) + d  where a b c d > 0, use your graph to find the values of a b c  and d .

 

[6]
g.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

3, −3       A1A1 

[2 marks]

a.

stretch parallel to the y -axis (with x -axis invariant), scale factor  2 3        A1

translation of  ( 0.003 0 )   (shift to the left by 0.003)      A1

Note: Can be done in either order.

[2 marks]

b.

correct shape over correct domain with correct endpoints       A1
first maximum at (0.0035, 4.76)       A1
first minimum at (0.0085, −1.24)       A1

[3 marks]

c.

p  ≥ 3 between  t = 0.0016762 and 0.0053238 and  t = 0.011676 and 0.015324       (M1)(A1)

Note: Award M1A1 for either interval.

= 0.00730       A1

[3 marks]

d.

p a v = 1 0.007 0 0.007 6 sin ( 100 π t ) sin ( 100 π ( t + 0.003 ) ) d t      (M1)

= 2.87       A1

[2 marks]

e.

in each cycle the area under the t axis is smaller than area above the t axis      R1

the curve begins with the positive part of the cycle       R1

[2 marks]

f.

a = 4.76 ( 1.24 ) 2        (M1)

a = 3.00        A1

d = 4.76 + ( 1.24 ) 2

d = 1.76        A1

b = 2 π 0.01

b = 628 ( = 200 π )        A1

c = 0.0035 0.01 4        (M1)

c = 0.00100        A1

[6 marks]

g.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.



Consider f ( x ) = 1 + ln ( x 2 1 )

The function f is defined by f ( x ) = 1 + ln ( x 2 1 ) ,   x D

The function g is defined by g ( x ) = 1 + ln ( x 2 1 ) ,   x ] 1 ,   [ .

Find the largest possible domain D for f to be a function.

[2]
a.

Sketch the graph of y = f ( x ) showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.

[3]
b.

Explain why f is an even function.

[1]
c.

Explain why the inverse function f 1 does not exist.

[1]
d.

Find the inverse function g 1 and state its domain.

[4]
e.

Find g ( x ) .

[3]
f.

Hence, show that there are no solutions to  g ( x ) = 0 ;

[2]
g.i.

Hence, show that there are no solutions to  ( g 1 ) ( x ) = 0 .

[2]
g.ii.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

x 2 1 > 0      (M1)

x < 1 or x > 1      A1

[2 marks]

a.

M17/5/MATHL/HP2/ENG/TZ1/12.b/M

shape     A1

x = 1 and x = 1      A1

x -intercepts     A1

[3 marks]

b.

EITHER

f is symmetrical about the y -axis     R1

OR

f ( x ) = f ( x )      R1

[1 mark]

c.

EITHER

f is not one-to-one function     R1

OR

horizontal line cuts twice     R1

 

Note:     Accept any equivalent correct statement.

 

[1 mark]

d.

x = 1 + ln ( y 2 1 )      M1

e 2 x + 2 = y 2 1      M1

g 1 ( x ) = e 2 x + 2 + 1 ,   x R      A1A1

[4 marks]

e.

g ( x ) = 1 x 2 1 × 2 x 2 x 2 1      M1A1

g ( x ) = x x 2 1      A1

[3 marks]

f.

g ( x ) = x x 2 1 = 0 x = 0      M1

which is not in the domain of g (hence no solutions to g ( x ) = 0 )     R1

 

[2 marks]

g.i.

( g 1 ) ( x ) = e 2 x + 2 e 2 x + 2 + 1      M1

as e 2 x + 2 > 0 ( g 1 ) ( x ) > 0 so no solutions to ( g 1 ) ( x ) = 0      R1

 

Note:     Accept: equation e 2 x + 2 = 0 has no solutions.

 

[2 marks]

g.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.i.
[N/A]
g.ii.



At an archery tournament, a particular competition sees a ball launched into the air while an archer attempts to hit it with an arrow.

The path of the ball is modelled by the equation

xy=50+tuxuy-5t

where x is the horizontal displacement from the archer and y is the vertical displacement from the ground, both measured in metres, and t is the time, in seconds, since the ball was launched.

In this question both the ball and the arrow are modelled as single points. The ball is launched with an initial velocity such that ux=8 and uy=10.

An archer releases an arrow from the point (0, 2). The arrow is modelled as travelling in a straight line, in the same plane as the ball, with speed 60m s-1 and an angle of elevation of 10°.

Find the initial speed of the ball.

[2]
a.i.

Find the angle of elevation of the ball as it is launched.

[2]
a.ii.

Find the maximum height reached by the ball.

[3]
b.

Assuming that the ground is horizontal and the ball is not hit by the arrow, find the x coordinate of the point where the ball lands.

[3]
c.

For the path of the ball, find an expression for y in terms of x.

[3]
d.

Determine the two positions where the path of the arrow intersects the path of the ball.

[4]
e.

Determine the time when the arrow should be released to hit the ball before the ball reaches its maximum height.

[4]
f.

Markscheme

102+82           (M1)

=12.8   12.8062, 164 ms-1          A1

 

[2 marks]

a.i.

tan-1108           (M1)

=0.896   OR   51.3   (0.896055   OR   51.3401°)           A1


Note:
Accept 0.897 or 51.4 from use of arcsin1012.8.

 

[2 marks]

a.ii.

y=t10-5t           (M1)


Note: The M1 might be implied by a correct graph or use of the correct equation.

 

METHOD 1 – graphical Method

sketch graph           (M1)


Note: The M1 might be implied by correct graph or correct maximum (eg t=1).


max occurs when y=5m           A1

METHOD 2 – calculus

differentiating and equating to zero           (M1)

dydt=10-10t=0

t=1

y=110-5=5m           A1

 

METHOD 3 – symmetry

line of symmetry is t=1           (M1)

y=110-5=5m           A1

 

[3 marks]

b.

attempt to solve t10-5t=0           (M1)

t=2  (or t=0)          (A1)

x =5+8×2= 21m           A1

Note: Do not award the final A1 if x=5 is also seen.

 

[3 marks]

c.

METHOD 1

t=x-58            M1A1

y=x-5810-5×x-58           A1


METHOD 2

y=kx-5x-21           A1

when x=13, y=5 so k=513-513-21=-564            M1A1

y=-564x-5x-21

 

METHOD 3

if y=ax2+bx+c

 0=25a+5b+c
 5=169a+13b+c
 0=441a+21b+c            M1A1

solving simultaneously, a=-564, b=13064, c=-52564           A1

(y=-564x2+13064x-52564)

 

METHOD 4

use quadratic regression on (5, 0), (13, 5), (21, 0)            M1A1

y=-564x2+13064x-52564           A1


Note: Question asks for expression; condone omission of "y=".

 

[3 marks]

d.

trajectory of arrow is y=xtan10+2             (A1)

intersecting y=xtan10+2 and their answer to (d)             (M1)

8.66, 3.53  8.65705, 3.52647           A1

15.1, 4.66     15.0859, 4.66006           A1

 

[4 marks]

e.

when xtarget=8.65705,  ttarget=8.65705-58=0.457132s             (A1)

attempt to find the distance from point of release to intersection             (M1)

8.657052+3.52647-22  =8.79060m

time for arrow to get there is 8.7906060=0.146510s             (A1)

so the arrow should be released when

t=0.311s  0.310622s           A1 

 

[4 marks]

f.

Examiners report

This question was found to be the most difficult on the paper. There were a good number of good solutions to parts (a) and part (b), frequently with answers just written down with no working. Part (c) caused some difficulties with confusing variables. The most significant difficulties started with part (d) and became greater to the end of the question. Few candidates were able to work through the final two parts.

a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.



Sketch the graphs  y = si n 3 x + ln x and  y = 1 + cos x  on the following axes for 0 < x ≤ 9.

[2]
a.

Hence solve  si n 3 x + ln x cos x 1 < 0 in the range 0 < x ≤ 9.

[4]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

       A1A1

Note: Award A1 for each correct curve, showing all local max & mins.

Note: Award A0A0 for the curves drawn in degrees.

[2 marks]

a.

x  = 1.35, 4.35, 6.64       (M1)

Note: Award M1 for attempt to find points of intersections between two curves.

0 < x < 1.35      A1

Note: Accept x  < 1.35.

4.35 < x < 6.64       A1A1

Note: Award A1 for correct endpoints, A1 for correct inequalities.

Note: Award M1FTA1FTA0FTA0FT for 0 <  x  < 7.31.

Note: Accept x  < 7.31.

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Consider the function f ( x ) = x sin x ,   0 < x < π .

Consider the region bounded by the curve y = f ( x ) , the x -axis and the lines x = π 6 ,   x = π 3 .

Show that the x -coordinate of the minimum point on the curve y = f ( x ) satisfies the equation tan x = 2 x .

[5]
a.i.

Determine the values of x for which f ( x ) is a decreasing function.

[2]
a.ii.

Sketch the graph of y = f ( x ) showing clearly the minimum point and any asymptotic behaviour.

[3]
b.

Find the coordinates of the point on the graph of f where the normal to the graph is parallel to the line y = x .

[4]
c.

This region is now rotated through 2 π radians about the x -axis. Find the volume of revolution.

[3]
d.

Markscheme

attempt to use quotient rule or product rule     M1

f ( x ) = sin x ( 1 2 x 1 2 ) x cos x sin 2 x   ( = 1 2 x sin x x cos x sin 2 x )     A1A1

 

Note:     Award A1 for 1 2 x sin x or equivalent and A1 for x cos x sin 2 x or equivalent.

 

setting f ( x ) = 0     M1

sin x 2 x x cos x = 0

sin x 2 x = x cos x or equivalent     A1

tan x = 2 x     AG

[5 marks]

a.i.

x = 1.17

0 < x 1.17     A1A1

 

Note:     Award A1 for 0 < x and A1 for x 1.17 . Accept x < 1.17 .

 

[2 marks]

a.ii.

N17/5/MATHL/HP2/ENG/TZ0/10.b/M

concave up curve over correct domain with one minimum point above the x -axis.     A1

approaches x = 0 asymptotically     A1

approaches x = π asymptotically     A1

 

Note:     For the final A1 an asymptote must be seen, and π must be seen on the x -axis or in an equation.

 

[3 marks]

b.

f ( x )   ( = sin x ( 1 2 x 1 2 ) x cos x sin 2 x ) = 1     (A1)

attempt to solve for x     (M1)

x = 1.96     A1

y = f ( 1.96 )

= 1.51     A1

[4 marks]

c.

V = π π 6 π 3 x d x sin 2 x     (M1)(A1)

 

Note:     M1 is for an integral of the correct squared function (with or without limits and/or π ).

 

= 2.68   ( = 0.852 π )     A1

[3 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.



Beth goes for a run. She uses a fitness app to record her distance, s  km, and time, t  minutes. A graph of her distance against time is shown.

Beth runs at a constant speed of 2.3 ms–1 for the first 8 minutes.

Between 8 and 20 minutes, her distance can be modeled by a cubic function,  s = a t 3 + b t 2 + c t + d . She reads the following data from her app.

Hence find

Calculate her distance after 8 minutes. Give your answer in km, correct to 3 decimal places.

[2]
a.

Find the value of a b c and  d .

[5]
b.

the distance she runs in 20 minutes.

[2]
c.i.

her maximum speed, in ms–1.

[4]
c.ii.

Markscheme

2.3 × 8 × 60 1000 = 1.104     M1A1

[2 marks]

a.

either using a cubic regression or solving a system of 4 equations         M1

a = 0.00364 , b = 0.150 , c = 1.67 , d = 6.72          A1A1A1A1

[5 marks]

b.

s ( 20 ) = 4.21 km  (Note: Condone s ( 20 ) = 4.2 km obtained from using rounded values.)      M1A1

[2 marks]

c.i.

EITHER finding maximum of d s d t OR solving  d 2 s d t 2 = 0      M1

maximum speed = 0.390… km per minute      A1

maximum speed = 6.51 ms–1     M1A1

[4 marks]

c.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.



Consider the function f defined by f ( x ) = 3 x arccos ( x ) where 1 x 1 .

Sketch the graph of f indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points.

[3]
a.

State the range of f .

[2]
b.

Solve the inequality | 3 x arccos ( x ) | > 1 .

[4]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

N16/5/MATHL/HP2/ENG/TZ0/05.a/M

correct shape passing through the origin and correct domain     A1

 

Note: Endpoint coordinates are not required. The domain can be indicated by 1 and 1 marked on the axis.

( 0.652 ,   1.68 )    A1

two correct intercepts (coordinates not required)     A1

 

Note: A graph passing through the origin is sufficient for ( 0 ,   0 ) .

 

[3 marks]

a.

[ 9.42 ,   1.68 ]   ( or  3 π ,   1.68 ] )    A1A1

 

Note: Award A1A0 for open or semi-open intervals with correct endpoints. Award A1A0 for closed intervals with one correct endpoint.

 

[2 marks]

b.

attempting to solve either | 3 x arccos ( x ) | > 1 (or equivalent) or | 3 x arccos ( x ) | = 1 (or equivalent) (eg. graphically)     (M1)

N16/5/MATHL/HP2/ENG/TZ0/05.c/M

x = 0.189 ,   0.254 ,   0.937    (A1)

1 x < 0.189  or  0.254 < x < 0.937    A1A1

 

Note: Award A0 for x < 0.189 .

 

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



Jorge is carefully observing the rise in sales of a new app he has created.

The number of sales in the first four months is shown in the table below.

Jorge believes that the increase is exponential and proposes to model the number of sales N in month t with the equation

N=Aert, A,r

Jorge plans to adapt Euler’s method to find an approximate value for r.

With a step length of one month the solution to the differential equation can be approximated using Euler’s method where

Nn+1Nn+1×N'n, n

Jorge decides to take the mean of these values as the approximation of r for his model. He also decides the graph of the model should pass through the point (2, 52).

The sum of the square residuals for these points for the least squares regression model is approximately 6.555.

Show that Jorge’s model satisfies the differential equation

dNdt=rN

[2]
a.

Show that rNn+1-NnNn

[3]
b.

Hence find three approximations for the value of r.

[3]
c.

Find the equation for Jorge’s model.

[3]
d.

Find the sum of the square residuals for Jorge’s model using the values t=1, 2, 3, 4.

[2]
e.

Comment how well Jorge’s model fits the data.

[1]
f.i.

Give two possible sources of error in the construction of his model.

[2]
f.ii.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

dNdt=rAert        (M1)A1

 

Note: M1 is for an attempt to find dNdt

 

=rN        AG

 

Note: Accept solution of the differential equation by separating variables

 

[2 marks]

a.

Nn+1Nn+1×N'nN'nNn+1-Nn        M1

rNnNn+1-Nn        M1A1

rNn+1-NnNn        AG

 

Note: Do not penalize the use of the = sign.

 

[3 marks]

b.

Correct method         (M1)

r52-4040=0.3

r70-5252=0.346

r98-7070=0.4        A2

 

Note: A1 for a single error A0 for two or more errors.

 

[3 marks]

c.

r=0.349 0.34871 or 68195        A1

52=Ae0.34871×2        (M1)

A=25.8887

N=25.9e0.349t        A1

 

[3 marks]

d.

36.6904-402+0+73.6951-702+104.4435-982        (M1)

=66.1 66.126        A1

 

[2 marks]

e.

The sum of the square residuals is approximately 10 times as large as the minimum possible, so Jorge’s model is unlikely to fit the data exactly     R1

 

[1 mark]

f.i.

For example

Selecting a single point for the curve to pass through

Approximating the gradient of the curve by the gradient of a chord       R1R1

 

[2 marks]

f.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.i.
[N/A]
f.ii.



Consider the curve y=x.

The shape of a piece of metal can be modelled by the region bounded by the functions f, g, the x-axis and the line segment [AB], as shown in the following diagram. The units on the x and y axes are measured in metres.

The piecewise function f is defined by

fx={x  0x0.161.25x+0.2  0.16<x0.5

The graph of g is obtained from the graph of f by:

Point A lies on the graph of f and has coordinates (0.5, 0.825). Point B is the image of A under the given transformations and has coordinates (p, q).

The piecewise function g is given by

gx={hx  0.2xa1.25x+b  a<xp

The area enclosed by y=g(x), the x-axis and the line x=p is 0.0627292m2 correct to six significant figures.

Find dydx.

[2]
a.i.

Hence show that the equation of the tangent to the curve at the point 0.16, 0.4 is y=1.25x+0.2.

[2]
a.ii.

Find the value of p and the value of q.

[2]
b.

Find an expression for h(x).

[2]
c.i.

Find the value of a.

[1]
c.ii.

Find the value of b.

[2]
c.iii.

Find the area enclosed by y=f(x), the x-axis and the line x=0.5.

[3]
d.i.

Find the area of the shaded region on the diagram.

[4]
d.ii.

Markscheme

y=x12           (M1)

dydx=12x-12          A1 

 

[2 marks]

a.i.

gradient at x=0.16 is 12×10.16          M1

=1.25


EITHER

y-0.4=1.25x-0.16          M1


OR

0.4=1.250.16+b          M1

 

Note: Do not allow working backwards from the given answer.

 

THEN

hence y=1.25x+0.2          AG

 

[2 marks]

a.ii.

p=0.45,  q=0.4125  (or 0.413)  (accept " (0.45, 0.4125) ")          A1A1

 

[2 marks]

b.

hx= 122x-0.2          A2


Note: Award A1 if only two correct transformations are seen. 

 

[2 marks]

c.i.

a= 0.28          A1


[1 mark]

c.ii.

EITHER

Correct substitution of their part (b) (or 0.28, 0.2) into the given expression         (M1)


OR

121.25×2x-0.2+0.2         (M1)


Note: Award M1 for transforming the equivalent expression for f correctly.


THEN

b= -0.15          A1


[2 marks]

c.iii.

recognizing need to add two integrals        (M1)

00.16xdx+0.160.51.25x+0.2dx         (A1)


Note: The second integral could be replaced by the formula for the area of a trapezoid 12×0.340.4+0.825.


0.251m2  0.250916          A1


[3 marks]

d.i.

EITHER

area of a trapezoid 12×0.050.4125+0.825=0.0309375        (M1)(A1)


OR

0.450.58.25x-3.3dx=0.0309375        (M1)(A1)


Note:
If the rounded answer of 0.413 from part (b) is used, the integral is 0.450.58.24x-3.295dx=0.03095 which would be awarded (M1)(A1).

 

THEN

shaded area =0.250916-0.0627292-0.0309375        (M1)


Note: Award (M1) for the subtraction of both 0.0627292 and their area for the trapezoid from their answer to (a)(i).

 

=0.157m2  0.15725          A1

 

[4 marks]

d.ii.

Examiners report

The differentiation using the power rule was well done. In part (ii) some candidates felt it was sufficient to refer to the equation being the same as the one generated by their calculator. Generally, for ‘show that’ questions an algebraic derivation is expected.

a.i.
[N/A]
a.ii.

The candidates were successful at applying transformations to points but very few were able to apply these transformations to derive the correct function h. In most cases it was due to not appreciating the effect the horizontal transformations have on x.

b.

The candidates were successful at applying transformations to points but very few were able to apply these transformations to derive the correct function h. In most cases it was due to not appreciating the effect the horizontal transformations have on x.

c.i.
[N/A]
c.ii.
[N/A]
c.iii.

Part (i) was frequently done well using the inbuilt functionality of the GDC. Part (ii) was less structured, and candidates needed to create a clear diagram so they could easily see which areas needed to be subtracted. Most of those who were successful used the formula for the trapezoid for the area they needed to find, though others were also successful through finding the equation of the line AB.

d.i.
[N/A]
d.ii.